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Abstract: -Symbol-pair read channels are first introduced by Cassuto and Blaum, in which the 
outputs of the read process are pairs of consecutive symbols. This new paradigm is motivated by the 
limitations of the reading process in some high density data storage systems. Soon later, a Singleton 
type bound for symbol-pair codes are established by Chee et al. and symbol-pair codes achieving 
this code are called MDS symbol-pair codes. With the benchmark, a lot of optimal symbol-pair are 
constructed by the effort of several papers. It is well known that bounds play an important role in 
coding theory. Two more bounds of symbol-codes are presented by Elishco et al very recently. In 
this paper, we continue the investigation of bounds of symbol-pair codes and establish two types of 
bounds, one is called Plotkin type bound and the other is call restricted Johnson type bound. We 
also present some examples of optimal symbol-pair codes that achieve these two new bounds.  

1. Introduction 

Symbol-pair coding theory has been widely studied due to its applications in channels where 
individual symbols cannot be read for some physical limitations. A coding-theoretic framework has 
been presented [1] to overcome pair-errors over symbol-pair read channels. Specially, it displayed a 
way making use of pair-vectors to characterize codewords. A relevant pair-distance metric has been 
set up and used to establish necessary and sufficient conditions for the pair-error model. 
Relationship between usual Hamming distance and pair-distance has been also been analyzed. Soon 
later, the Singleton type bound of symbol-pair code has been found [2] and its corresponding 
optimal codes are called MDS symbol-pair codes[3]. Since then, MDS symbol-pair codes have been 
studied widely and a lot of optimal such codes are constructed via different kind of techniques 
[6-9].  

In addition, two other bounds are established in [4], one is called John type bound and the other 
is called linear programming bound. With these two bounds, some new optimal symbol-pair codes 
are presented. In coding theory, it is known that bounds play an important role because people can 
use them as criterions to measure the optimality of codes. Without bounds, we cannot judge the 
optimality of a code. In this paper, we will continue the investigation of codes for symbol-pair read 
channels and focus on two new types of bounds of such codes. One is Plotkin type bound and the 
other is restricted Johnson type bound[11]. 

2. Preliminaries 

For a positive integer 2n ≥ , n  denote the ring / n  . Let Γ  be a set of q  elements, 

called symbols. Let nΓ  be the set of all n -length sequences over Γ . The coordinates of nX ∈Γ  
are indexed by elements of n , so that 0 1 1( , , , )nX x x x −=  .  

A pair-vector over Γ  is a vector in ( )nΓ×Γ . For any 0 1 1( , , , ) n
nX x x x −= ∈Γ , the 

symbol-pair read vector of X  is the pair-vector (over Γ ) 

0 1 1 2 2 1 1 0( ) (( , ), ( , ) , ( , ), ( , ))n n nx x x x x x x x xπ − − −=  . 
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Obviously, each vector nX ∈Γ  has a unique symbol-pair read vector ( ) ( )nxπ ∈ Γ×Γ .  

For a vector nX ∈Γ , denote by ( )Hw X  the Hamming weight of X . For any vector nX ∈Γ , 
the pair-weight of X  is defined as  

( ) ( ( ))p Hw X w xp= . 

A code   is said to ba a constant pair-weight if all codewords have the same pair-weight.  
For two vectors , nX Y ∈Γ , denote by ( , )Hd X Y  the Hamming distance between X and Y . 

The pair-distance between X and Y  is defined as  

( , ) ( ( ), ( ))p Hd X Y d X Ypp =  

A ( q -ary) code of length n  is a nonempty set n⊆ Γ . Define the minimum pair-distance of 
  as  

( ) min{ ( , ) | , , }p pd d X Y X Y X Y= ∈ ≠{{   

A code   of length n  over Γ  is called an ( , , )pn M d -symbol-pair code if its size is M  
and the minimum pair-distance is pd . Furthermore, if all the codewords of   have the same 
pair-weight pw , we call   an ( , , , )p pn M d w  constant pair-weight symbol-pair code.  

Let , , ,p pq n d w  be integers. Let ( , )q pA n d  be the maximal size of a q -ary symbol-pair code 
of length n  with pair-distance pd  and ( , , )q p pA n d w  be the maximal size of a q -ary 
symbol-pair code of length n  with pair-distance pd  and constant weight pw . We call a q -ary 
( , )pn d  symbol-pair code with size ( , )q pA n d  is optimal. Similarly, a q -ary ( , , )p pn d w  
constant pair-weight symbol-pair code with size ( , , )q p pA n d w  is called optimal.  

3. The Plotkin Type Upper Bound 

In this section, we present a Plotkin type upper bound. We notice that this type upper bound has 
been investigated in [10], in which the proof follows a similar logic as the proof of the Plotkin 
upper bound [5, Theorem 2.2.1]. Here we will provide the proof in detail for the convenience of 
readers. In addition, we will also improve the Plotkin bound strictly for the binary case.  

Theorem 3.1.  Let   be a q -ary ( , , )pn M d  symbol-pair code over Γ  such that 
2 2( 1)pq d q n> − . Then  

2

2 2( , )
( 1)

p
q p

p

q d
A n d

q d q n
 

≤  
− −  

 

Proof. Let 

( , )p
X Y

S d X Y
∈ ∈

= ∑∑
 

 

If X Y≠  for ,X Y ∈ , then ( , )p pd d X Y≤  implying that  

( 1) pM M d S− ≤                            (1) 

Let ℜ  be the M n×  matrix whose rows are the pair-vector of codewords of  . For 
1 i n≤ ≤ , let ,( , )in α β  be the number of times ( , )α β ∈Γ×Γ occurs in columns i  of ℜ . As 
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,( , )
( , )

in Mα β
α β ∈Γ×Γ

=∑  for 1 i n≤ ≤ , then we have  

2 2
,( , ) ,( , ) ,( , )

1 ( , ) 1 ( , )
( )

n n

i i i
i i

S n M n nM nα β α β α β
α β α β= ∈Γ×Γ = ∈Γ×Γ

= − = −∑ ∑ ∑ ∑
 (2) 

By the Cauchy-Schwartz inequality, we have  
2

2 2
,( , ) ,( , )

( , ) ( , )
i in q nα β α β

α β α β∈Γ×Γ ∈Γ×Γ

 
≤ 

 
∑ ∑                         (3)  

By (2) and (3), we obtain  
2

2 2 2 2
,( , )

1 ( , )
(1 )

n

i
i

S nM q n n q Mα β
α β

− −

= ∈Γ×Γ

 
≤ − = − 

 
∑ ∑               (4)  

Since M  is an integer, combining (1) and (4), we obtain the following upper bound 
2

2 2( 1)
p

p

q d
M

q d q n
 

≤  
− −  

. 

Then the proof is complete.   
 
If 2q = , the following result is clear.  
Corollary 3.1.  Let   be a binary ( , , )pn M d  symbol-pair code such that 4 3pd n> . Then  

2

4
( , )

4 3
p

p
p

d
A n d

d n
 

≤  
−  

 

Example 1. Each row of the following array is a codeword of  . It is readily verified that for 
the symbol-pair code  , 7, 6, 8pn d M= = = .  

1 1 1 1 1 1 1
1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1

 
 
 
 
 
 =  
 
 
 
  
 



 

Since  

2

4 4 6(7,6) 8
4 3 4 6 3 7

p

p

d
A

d n
  × ≤ = =   − × − ×   

, 

  presented above is an optimal binary (7, 8, 6) symbol-pair code.   
Actually, the Plotkin type bound of symbol-pair codes for the binary case can be further 

improved.  
Theorem 3.2. Let   be a binary ( , , )pn M d  symbol-pair code over 2  such that 

4 3pd n> . Then  
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2

2

2

2
2 if ( , ) is even,

4 3
( , )

3 if ( , ) is odd.
4 3

p
p

p

p

p
p

d
A n d

d n
A n d

n A n d
d n

  
  

−   ≤ 
 
  −  

 

Proof. Let ℜ  be the M n×  matrix whose rows are the pair-vector of codewords of  . By 

Corollary 3.1, we have 
4

4 3
p

p

d
M

d n
 

≤  
−  

 for the binary case. If M  is even, we can round the 

expression 
4

4 3
p

p

d
d n−

 down to the nearest even integer, which gives the result.  

If M  is odd, we do not use Cauchy-Schwartz in the proof of Theorem 3.1. Instead, from (2), 
we observe that 

,(0,0) ,(0,0) ,(0,1) ,(0,1) ,(1,0) ,(1,0) ,(1,1) ,(1,1)
1

2 2 2 2
,(0,0) ,(0,1) ,(1,0) ,(1,1) ,(0,0) ,(0,1) ,(1,0) ,(1,1)

1

2 2
,(0,0) ,(0,1

[ ( ) ( ) ( ) ( )]

[ ( ) ]

[

n

i i i i i i i i
i
n

i i i i i i i i
i

i i

S n M n n M n n M n n M n

M n n n n n n n n

M n n

=

=

= − + − + − + −

= + + + − − − −

= − −

∑

∑

2 2

2 2 2
) ,(1,0) ,(1,1)

1

2 2
,( , )

1 ( , )

]

[ ]

n

i i
i

n

i
i

n n

M n α β
α β

=

= ∈ ×

− −

= −

∑

∑ ∑
 

 

Since, for each 1 i n≤ ≤ ,  

2 2

2 2

2

2
,( , )

( , )

2
,( , ) ,(0,0) ,(0,1) ,(0,0) ,(1,0) ,(0,0) ,(1,1)

( , )

,(0,1) ,(1,0) ,(0,1) ,(1,1) ,(1,0) ,(1,1)

2 2 2

2 2 2

i

i i i i i i i

i i i i i i

M n

n n n n n n n

n n n n n n

α β
α β

α β
α β

∈ ×

∈ ×

 
=  
 

= + + +

+ + +

∑

∑
 

 

 

Then 

,(0,0) ,(0,1) ,(0,0) ,(1,0) ,(0,0) ,(1,1)
1

,(0,1) ,(1,0) ,(0,1) ,(1,1) ,(1,0) ,(1,1)

[2 2 2

2 2 2 ]

n

i i i i i i
i

i i i i i i

S n n n n n n

n n n n n n
=

= + +

+ + +

∑
             (5) 

If 1M ≡  (mod 4), the right-hand side of (5) is maximized when 

,(0,0) ,(0,1) ,(1,0) ,(1,1)
1 1 1 3{ , , , }={ , , , }

4 4 4 4i i i i
M M M Mn n n n − − − +

 

Thus, combining (1) and (5), we obtain  

      23 3( 1) [( 1) +( 1)( 3)]= [( 1)( 1)]
8 4p
n nM M d M M M M M− ≤ − − + + −         (6) 

Similarly, if 3M ≡  (mod 4), the right-hand side of (5) is maximized when 

,(0,0) ,(0,1) ,(1,0) ,(1,1)
1 1 1 3{ , , , }={ , , , }

4 4 4 4i i i i
M M M Mn n n n + + + −
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Thus we still obtain 
23 3( 1) [( 1) +( 1)( 3)]= [( 1)( 1)]

8 4p
n nM M d M M M M M− ≤ + + − + −        (7) 

Hence, by (6) or (7), we obtain 
3

4 3p

nM
d n

≤
−

. 

The proof is complete.   
Remark 1. By comparing Corollary 3.1 and Theorem 3.2, it is clear that when M  is odd, the 

bound 
3

4 3p

nM
d n

≤
−

 is strictly better than 
4

4 3
p

p

d
M

d n
≤

−
 because 3 4 pn d≤ . It is a 

meaningful work to construct optimal binary symbol-pair codes which achieve the bound of 
Theorem 3.2. 

4. The Restricted Johnson Type Bound 

In this section, we consider another new upper bound, the restricted Johnson type bound, which 
is concern on the constant pair-weight symbol-pair codes. The proof follows the logic as the proof 
of the upper bound [5, Theorem 2.3.4].  

Theorem 4.1. Let  be a q -ary ( , , , )p pn M d w  constant pair-weight symbol-pair code over 

Γ  such that 2 2 2 22( 1) ( 1) 0p p pq w q nw nd q− − + − > , then 
2

2 2 2 2
( 1)( , , )

2( 1) ( 1)q p p
p p p

nd qA n d w
q w q nw nd q
 −

≤  
− − + −  

 

Proof. The second bound is a special case of the first one. The proof of the first one uses the 
same idea as in the proof of the Plotkin Bound. Let   be an ( , , , )p pn M d w  constant weight 
symbol-pair code. Let ℜ  be the M n× matrix whose rows are the pair-vectors of the codewords 
of  . 

Let  
( , )p

X Y
S d X Y

∈ ∈

= ∑∑
 

 

If X Y≠  for ,X Y ∈ , then ( , )p pd d X Y≤ implying that  
( 1)M M d S− ≤                            (8) 

For 1 i n≤ ≤ , let ,( , )in α β  be the number of times ( , )α β ∈Γ×Γ  occurs in columns i  of 

ℜ . As ( , ) ,( , )in Mα β α β∈Γ×Γ =∑ for 1 i n≤ ≤ , we have  

,( , ) ,( , )
1 ( , )

2 2
,(0,0) ,(0,0) ,( , ) ,( , )

1 1 ( , ) \(0,0)

( )

( ) ( )

n

i i
i

n n

i i i i
i i

S n M n

Mn n Mn n

α β α β
α β

α β α β
α β

= ∈Γ×Γ

= = ∈Γ×Γ

= −

= − + −

∑ ∑

∑ ∑ ∑
      (9) 

We analyze each of the last two terms one by one.  

First, because ,(0,0)1

n
ii

n
=∑  counts the number of (0,0) ’s in the matrix ℜ  and each of the 

M  rows of ℜ  has pn w−  (0,0) ’s, we have  

,(0,0)
1

( )
n

i p
i

n n w M
=

= −∑  
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Second, by the Cauchy-Schwartz inequality,  
2

2
,(0,0) ,(0,0)

1 1

n n

i i
i i

n n n
= =

 
≤ 

 
∑ ∑  

Combining these we see that the first summation on the right-hand of (9) satisfies 
2 2 2

,(0,0) ,(0,0) ,(0,0)
1 1

2 2
2

1( ) ( ) ( )

( )( )

n n

i i p i
i i

p

Mn n n w M n
n
n w Mn w M

n

= =

− ≤ − −

−
= − −

∑ ∑
              (10) 

For the second summation, we have 

,( , )
1 ( , ) \(0,0)

n

i p
i

n w Mα β
α β= ∈Γ×Γ

=∑ ∑  

By the Cauchy-Schwartz inequality,  
2

2 2
,( , ) ,( , )

1 ( , ) \(0,0) 1 ( , ) \(0,0)
( 1)

n n

i i
i i

n n q nα β α β
α β α β= ∈Γ×Γ = ∈Γ×Γ

 
≤ − 

 
∑ ∑ ∑ ∑  

This produces  
2

2 2 2
,( , ) ,( , ) ,( , )2

1 1 ( , ) \(0,0)

2 2
2

1( )
( 1)

1 ( )
( 1)

n n

i i p i
i i

p p

Mn n w M n
n q

w M w M
n q

α β α β α β
α β= = ∈Γ×Γ

 
− ≤ −  −  

= −
−

∑ ∑ ∑
        (11)  

Combining (8),(9),(10) and (11), we obtain  
2 2

2 2 2
2

( ) 1( 1) ( ) ( )
( 1)

p
p p p p

n w M
M M d n w M w M w M

n n q
−

− ≤ − − + −
−

 

By simplying, we get  
2

2 2 2 2
( 1)( , , )

2( 1) ( 1)q p p
p p p

nd qA n d w
q w q nw nd q
 −

≤  
− − + −  

 

So the proof is complete.  
Example 2. Each row of the following array is a codeword of  . It is readily verified that for 

the constant pair-weight symbol-pair  , 7, 6, 5, 7p pn d w M= = = = . 
1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1
1 0 0 0 1 0 1
1 1 0 0 0 1 0
0 1 1 0 0 0 1

 
 
 
 
 =  
 
 
 
 
 



 

Since  

2 2 2

3 3 7 6 63(7,6,5) 7
4 6 3 4 5 6 7 5 3 7 6 8

p

p p p

nd
A

w nw nd
  × ×   ≤ = = =     − + × − × × + × ×     

 

  presented above is an optimal binary (7, 8, 6, 5) constant pair-weight symbol-pair code. 

Conclusion 
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In this paper, we study the bounds for symbol-pair codes. Previously, the Singleton Type bound 
has been found [2] and its corresponding optimal codes are called MDS symbol-pair codes which 
have been studied widely. A lot of optimal MDS symbol-pair codes are constructed via different 
kinds of techniques. In [4], two other bounds are established and some optimal symbol-codes are 
also presented. It is clear that to produce optimal symbol-codes with some parameters, we have to 
establish bounds first. In this paper, we establish two upper bounds for symbol-pair codes and some 
examples for optimal symbol-pair codes which achieve the upper bounds. It is meaningful to 
construct more classes optimal symbol-pair codes which achieve the bounds obtained in this paper.  
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